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A model is formulated to account for structural and collective reorganization effects in a random 
packing of spherical particles which, during sintering, is undergoing global densification as 
a consequence of reduction of the total free surface energy. This model is found to describe, both 
qualitatively and quantitatively, the rearrangement of the stacking in such a way that areas with 
high local coordination tend to contract at a relatively high rate and zones with low coordination 
densify at a reduced rate or even decrease their density. Statistical effects arising from peculiarities 
in the particle packing can also be analysed with the help of the mathematical description given. It 
is found that the rearrangement may also give rise to structural defects and ultimately lead to poor 
mechanical properties. 

1. I n t r o d u c t i o n  
In an earlier publication [ 1], it was shown that local 
variations in coordination of individual particles of 
a stacking, constituting the green structure of a ce- 
ramic body, can lead to structural reorganization. 
This effect will severely influence the structure of the 
densifying material and ultimately give rise to un- 
wanted defects. However, this model did not give 
a rigorous statistical treatment of the spectral distribu- 
tion of the stacking density and the related pore-size 
distribution. Although it does show that, even in 
a random and globally homogeneous packing, defect 
formation will readily occur, it is not easily interpreted 
in terms of overall changes taking place in the com- 
plete structure. 

This paper envisages reformulation of the model 
such that the analysis can be carried some steps fur- 
ther to lead to a number of interesting conclusions on 
the densification of a structure during the early phase 
of sintering where reorganization is seen to occur 
vigorously. First, a general equation describing the 
effect of local departures from the average particle to 
particle distance will be derived. This equation will 
constitute the basis for the description of the spectral 
development of the local stacking parameter. Sec- 
ondly, it will be shown that even a close-packed ran- 
dom stacking of monosized spherical particles always 
exhibits minor deviations from the average stack- 
ing density and therefore leads to fluctuations in the 
final structure. 

2. Dev ia t ions  f r o m  the average 
densi f ica t ion  due to 
var ia t ions  in the  par t ic le  
coord ina t ion  

In our earlier paper [1], it was shown that a stacking 
of spherical particles having local variations in their 

individual coordination will exert a pressure on its 
immediate surroundings. This pressure is determined 
by both the total average densification of the structure 
and the difference between the local and average co- 
ordination. If we assume that somewhere in the stack- 
ing of particles there exists a gradient in the local 
coordination, we must conclude that a force is acting 
on the particle under consideration into the direction 
of the area with highest coordination. This force, F, is 
a direct consequence of a gradient in the free surface 
energy due to the sintering of the particles and is given 
by the following expression 

F = rcyR 2 ~z [_ (2z - 1) 2 ~xx (1) 

where G is the coordination, y the surface tension and 
R the particle radius. The parameter z expresses the 
local density of the stacking with z = z(x, t) such that 

z = (9/90) 1/3 = R / r  (2) 

where 2r is the centre-to-centre distance of adjacent 
particles, p the local and Po the starting density of the 
packing. 

Fig. 1 shows schematically two mutually approach- 
ing spherical particles along with the different para- 
meters introduced. 

Equation 1 deviates slightly from that given before 
[1], in that the effect due to the increased coordina- 
tion by densification is neglected. Also the contribu- 
tion of the neck zone being formed, when two particles 
decrease their centre-to-centre distance, is taken into 
account, which has led to the fact that in Equation 
1 the factor 2z - 1 appears instead of z. The force, F, 
generates a pressure which stimulates densification in 
zones with a relatively high stacking density and 
causes dilution at places where the stacking density is 
lower than average. Fig. 2 depicts our visualization of 
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Figure 1 Two spherical particles coalescing due to internal mass 
transport. 
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Figure 2 A particle stacking with a gradient in the local coordina- 
tion, resulting in a variation of the stacking parameter, z, 

a stacking and its tendency to rearrange according to 
the model proposed. 

We may define two pressures, p+ and p- ,  by 

1 Fdx (3a) n R 2 p -  = 2--R i<z=ol 

and 

1 Fdx (3b) nRZP+ = 2---R (<~=o) 

which are the pressures in the stacking accumulating 
by adding up the forces from the location with lowest 
density, z(~2 z = 0), to the actual z(x) and by adding 
from the place with highest density, z ( ~  + z = 0). The 
prevailing pressure in the system, p, is the sum of p +/2 
and p-/2.  If we substitute Equation 1 into Equations 
3a and b, we obtain for the stacking pressure 

p = -~(7(z -- i) + 8z(G - (7) (4) 

where average values for the densification 5 = z 
(%+z = 0)/2 + z(%~-z = 0)/2 and the coordination 
(7 = G(~ + z = 0)/2 + G(~2 z = 0)/2 are introduced to 
account for the fact that the stacking as a whole will 
densify at a rate to be superimposed on the local 
densification or dilution of the structure due to reor- 
ganization. Further, 8z is the average densification of 
the structure and may be set equal to 5 - 1, Following 
the analysis used previously [ l] ,  we can correlate the 
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pressure, p, with a densification rate dz/dt and find 

dz _ 2~I [(7(z - ~) + 6z(G- (7)] (5) 
dt 3Rpozarl 

The parameter q in this equation should be con- 
sidered as an apparent plasticity and is basically deter- 
mined by the choice of the mechanism of material 
transport during sintering of the structure [1]. This 
equation gives a description of a locally varying 
change of the parameter z as a consequence of vari- 
ations in the local stacking density and coordination 
only. As indicated before, the effect of an overall and 
homogeneous density increase of the structure as 
a whole, should be included in this expression for 
dz/dt. This quantity has been calculated [ 1 ], although 
the explicit form is not of much importance for the 
present analysis. 

If we sum up the total effect of changes in the 
density due to rearrangement and homogeneous den- 
sification, we get 

d(z - ~) 27 
- [(7(z - e) + 6z(~- d)] 

dt 3 R 9o z 2 rl 
(6) 

which is the general equation describing the variation 
with time of the departures from the average of the 
local stacking density depending on the actual local 
stacking density, the overall densification in the struc- 
ture, 8z, and the variation in the coordination com- 
pared with the average. 

This expression has an obvious interpretation: sup- 
pose we have a stacking Where some densification has 
already taken place and there is a group of particles 
which have lower coordination than the average: 
8z > 0 and G - (7 < 0, then Equation 6 leads to the 
result that d ( z -  i) /dt  < 0 and consequently that 
z - 5 < 0, which further enhances the decrease of the 
densification rate. The opposite is true for G - (7 > 0. 
The important conclusion of this should be that in 
a stacking where normally, for statistical reasons, vari- 
ations in the coordination should exist, a reorganiza- 
tion will be taking place in such a way that in areas 
with lower than average stacking densities the densifi- 
cation due to sintering will slow down, whereas it will 
be accelerated in places with high coordination or 
local density. Equation 6 will be the most important 
ingredient to arrive at a suitable description for the 
statistical development of the reorganization of a sin- 
tering random stacking of spherical particles. 

3. Statistical t reatment  of the 
reorganization effect  

To proceed further we introduce the following 
quantities: al(t) = 27d/(3Rpoz2q); a2(t) = 27~z/ 
(3Rp0z2q); y -- z - ~ and AG = G - (7, so that Equa- 
tion 6 transforms into the much simpler expression 

dy  
dt a l ( t )y  + a2(t)AG (7) 

It should be noticed in this context, that the para- 
meters al(t) and a2(t) have an explicit dependence on 



time because in the model proposed, the quantity 
q starts from zero at z = 1 and follows a specific 
dependence on time determined by the transport 
mechanism chosen [ 1 ]. Now, a space is defined which 
represents the number of particles, dO (h, ~)d~ lying at 
a specific moment between ~ and ~ + d~ where ~ is 
directly connected to the individual value of the den- 
sification given by z(t), and h is a measure of the time 
during which sintering has taken place. The relation 
between the number density function, dO, and ~ and h is 
given by the continuity equation 

+ dO~ = 0 (8) 

where we will propose a solution for dO such that the 
explicit and implicit dependence of dO are separated by 
u(h ) and 

dO = u(h) ' f[u(h) .~]  (9) 

Further we will assume, for the time being, that the 
relation between ~ and h may be given by 

d~ 
- -  = ~ ( h ) ~  ( 1 0 )  
dh 

which will later be shown to be a transformation of 
Equation 7 to the dO (h, ~)-space. Now it is most im- 
portant to find out which form the explicit relation 
between u and h should have such that Equation 9 is 
a solution of the continuity equation. 

After substitution of Equation 9 into the continuity 
Equation 8, the following identity is obtained 

f (u '~)  + u '~  �9 J d-h + ct(h)u = 0 

(11) 

The trivial solution occurs when the first part vanishes, 
and represents a spectrum in z or ~ which does not vary 
in time or h. It is of no use for the present analysis. The 
second condition is given by the equation 

du 
- -  + ~ ( h ) u  = 0 ( 1 2 )  
dh 

The interpretation of the result, obtained so far, is that 
an assumption on the time behaviour of r leads via the 
form proposed for the solution of dO to a specific 
condition on u, which is most easily solved when c~ is 
a constant. In this latter case the solution of Equation 
8 will be of the form 

dO = dOoe-~h'f(e-~'h'~) (13) 

The problem now is to start from Equation 7 and to 
transform it into an equation of the type given in 
Equation 10 such that ~ is a constant. Further, the 
functon dO(h = 0) will have to be adjusted to the start- 
ing distribution determined by the initial coordination 
distribution of the particles in the stacking. 

For this purpose we start with the case of bulk 
diffusion as the mechanism responsible for the mater- 
ial transport and we need the explicit time dependence 
of al(t) and az(t  ) as given by the equations derived 

in I l l  

dy 
dt = b l y t - 1 / 2  + b2 (14) 

If we now put h = t  1/2 and ~ = y + [ ( b 2 / b l ) h ]  
+ (b2/2b2), we find d~/dh = 2bl ~ with y = 0 for h = 0, 
so that it can easily be shown that the correct trans- 
formation to solve the continuity equation is found 
with ~ = 2ba. Further the fact that ~ = b2/2b~ or 
h = 0 gives a possibility to adjust thedistribution to 
the startingcondition, where it may be shown that 

b 2 4AG 
2b 2 G 2 (15) 

In the second case to be considere& grain boundary 
diffusion, we adopt a similar procedure. In this par- 
ticular case the basic equation reads 

dy _ c l y t - Z / 3  q_ C2 t 1/3 (16) 
dt 

and we make the following substitution to transform 
this equation into the correct type, with h = t 173 and 

= y + [(c2/cl)h] + (c2/3c~), so that ~ =  3q .  With 
the same procedure as before it is found that the 
starting condition on ~ for h = 0 becomes identical to 
the case of bulk diffusion 

c2 4AG 
- ( 1 7 )  3c 2 G 2 

If we now start with the distribution function, pro- 
posed above, which has been shown to be a solution of 
the continuity equation when the correct expressions 
for the quantities ~ and h are introduced, we may take 
the particular case of h = t = 0 and find 

dO = dOof(~) (18) 

which should necessarily represent the distribution of 
particles identified by the parameter bz/2b~ or c2/3c 2, 
both being equal to 4AG/G 2. 

We know that a random packing of particles can be 
characterized by a Gaussian distribution on the basis 
of their individual coordination [1-4]  so that the 
correct form of the present distribution function 
dO ({, h) should be 

e 2blh _ ~2e-4blh ] 
~ e x p [  ~ j (19a) 

as the basic transport mechanism 

do(~, h) - 

f o r  bulk diffusion 
and 

do (~,, h) - 
e-3C h [_ 2e 6c h l 

cy(2~)1/2 exp 2cy 2 (19b) 

for grain-boundary diffusion. The quantity cy gives the 
scatter of the distribution. 

To arrive at the final representation for the distribu- 
tion as a function of the local densification parameter, 
y, one more thing still has to be done: we should find 
a relation between ~ and h for both transport mechan- 
isms under consideration. For  this purpose the exact 
solution for ~ as a function of h is needed, which is 
given by the transformed equation describing the time 
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dependence of the densification parameter, y, and the 
explicit connection between ~ and h. The basic equa- 
tions are 

d~ 
- 2 b ~  (20a) 

dh 

b2 b2 
= Y + o,7h + 2b~ (20b) 

for bulk diffusion, and for grain-boundary diffusion 

d~ 
- -  = 3cl~ (21a) 
dh 

cl 3c~ (21b) 

From these we may eliminate the factor b2/bl o r  c2/c1, 
respectively, and develop this result into a Taylor 
series, followed by substitution into Equations 19a 
and b. The result is 

2e-2blh - -  2y2e-4b*h 1 
qb(y, h) = (2b ,h)  2 cy(2=)~75.expL ~h~-~ j 

(22a) 

and 

2e-3<h I -- 2y2e- 6c*hl 
?p(y,h) = i3c~h) 2cr(2r@/~expL ( 3 < h ~  ~-5 _~ 

(22b) 

This distribution has a very interesting interpretation. 
First, we see that it is normalized to unity, which is 
a consequence of the fact that we have already started 
with a normalized distribution for the factor b2/2b 2 or 
c2/3c~ which were related to the local coordination of 
the particles in the stacking. Second, we notice that 
when h approaches 0, which is the very beginning of 
the densification of the structure, the distribution be-  
comes infinite at y = 0 and vanishes for y # 0, but it 
remains normalized to unity. What we are actually 
saying is that the distribution is of the shape of a Dirac 
&function in the limit of h = 0. The physical inter- 
pretation obviously is that right at the beginning of 
sintering, all particles have the same densification. 
Consequently, the local and individual value of z is 
equal to the average value 2 which is equal to one. The 
distribution should show that all the particles have the 
same y being equal to zero. As the sintering proceeds, 
particles with different coordination will show differ- 
ent development of y as a function of time or h, in such 
a way that particles with a coordination higher than 
average shift to higher values of y and those with lower 
coordination than average will see their y reducing. 
The overall effect will be that the distribution is very 
rapidly broadening. 

We can carry the present analysis one step further 
by calculating a more tractable expression for para- 
meters b, h and c~ h on the basis of the results given 
previously [ t ] :  2bl h = �89 GSz and 3q h = �89 G~z. In- 
serting this into the distribution d~ (y, h) we obtain 
a surprisingly simple result which relates the distribu- 
tion to more easily accessible parameters for both 
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cases of bulk and grain-boundary diffusion 

8e- lJZG~z [- _ 32y2e-G6z 1 = b2  - exp L 
(23) 

One more thing still has to be done in this respect: to 
define the quantity c~ more explicitly. In two sub- 
sequent papers, Belik [3, 4] gives an analysis of the 
relationship between the coordination number and 
the packing density in a random stacking and derives 
a number of distributions of contacts among equal 
sized spheres at various average coordinations. Cum- 
berland and Crawford [2] give experimental evidence 
on the particle packing of a model system of gunshot 
and finds an average coordination which resembles 
the value of G = 7.3 in Belik's analysis, a number 
which is also adopted by Arzt [5]. From this result it 
may be concluded that AG at a height of t/e 1/2 
amounts to G/3, so that, for the present analysis, we 
can set c~ equal to 4/(3G). If we further abandon the 
coordinate y and put z - 5 instead, we will obtain the 
final result 

6e -l/2G~z [ - -  t8 (ZG~z ~ -  ~)2 e-G~ 1 4a(z, ~z) - G~z2i2---~exp|-  
J 

(24) 

This result can even be simplified further by normaliz- 
ing the distribution to its peak value at z = 

~(z,~)z) [ - -  18 (Z-- i)2e -G~] 
(5, 8z) - exp ~Sgza- (25) 

4. Discussion 
In the preceeding section the spectral developmet of 
the particle stacking was derived on the basis of a spe- 
cific time dependence of the parameter z which is 
a measure of the centre-to-centre distance of adjacent 
particles. This spectral development is found to be 
expressed as a simple equation, especially when it is 
normalized to the peak value of the distribution 
at z = i. It is also seen that in both cases considered, 
bulk and grain-boundary diffusion, the same result 
emerges, which makes the interpretation of the model 
independent of the choice of any of these as the domi- 
nant diffusion mechanism. In fact, because the struc- 
ture is characterized by a densification parameter, z, 
and the actual coordination, G, it is easy, knowing the 
stacking density distribution, to characterize a num- 
ber of structural changes occurring during sintering. 

The only point is to notice that, as far as the statist- 
ical aspect is concerned, a Gaussian distribution in the 
primary coordination was taken as the starting point. 
The consequence of this is that a specific packing 
structure is described, belonging to a globally homo- 
geneous structure. Any other distribution function 
could have been taken as the starting distribution for 
Equation 13, because this is only a general solution of 
the continuity equation. 

Fig. 3 shows a schematic drawing of the spectral 
development together with the relevant features to be 
dealt with in this discussion. 
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Figure 3 The initial coordination of a random stacking of particles 
and the spectral development of the rearrangement effect. 

If we limit, for the moment, the discussion to glob- 
ally homogeneous structures which do have reorgan- 
ization, we should determine the particular values of 
z in relation to ~ and 8z to quantify the frequency of 
significant structural peculiarities during and due to 
reorganization. In this respect, two visualizations are 
possible. One is that in both cases of densification and 
dilution of the structure, the positions of the adjacent 
particles relative to one another remain the same. This 
assumption is believed to apply to dense and/or rigid 
stackings, where the freedom for any sort of relative 
movement is highly restricted. 

Such a situation will lead to non-densifying situ- 
ations in areas where 8z < 5 - z. If we substitute this 
condition into Equation 25 with G = 7.3 and 8z = 0.1, 
it is readily concluded that defects may be expected 
only in a very limited number of cases. 

The second possibility is that the particles will not 
necessarily maintain their relative positions as can be 
expected in relatively loose packings. In such a case, 
certain assumptions will have to be made concerning 
additional reorganization effects. Because in the pres- 
ent analysis the total densification is assumed to be the 
sum of the homogeneous effect and the reorganization 
effect, we should also consider the contribution of any 
other redistribution separately. 

If it is assumed, further, that the distance over which 
redistribution forces in the structure are piling up is 
greater than the particle dimensions, we may calculate 
the projection of the centre-to-centre distance of 
adjacent particles into the direction of the stacking 
density gradient, while keeping the lateral projections 
unaltered. This has been worked out previously [1] 
and the result reads that local dilutions occur if 
(8z/3) < ~ -  z. Inserting this into Equation 25, again 
with G = 7.3 and 8z = 0.1, it is concluded that a rela- 
tively large number of particles will be connected to 
places where voids in the structural development oc- 
cur. In such instances, a drastic reduction of local 
coordination may additionally induce growth of 
structural defects. 

A second reorganization effect involving sliding of 
particles and resulting into higher densities can also be 
assumed, in which case the factor 1/3 will be substan- 
tially lower and, consequently, an even greater num- 

Figure 4 Microstructures of A1203 (a) at moderate densification 
and (b) after about 1 h at 1500 ~ 

ber of particles will be connected to rapidly growing 
voids in the structure. A number of typical features, 
often seen in densifying structures, is explained by the 
present model. An example of it is shown in Fig. 4, but 
numerous papers published in the open literature 
show basically the same tendency [6-9] .  It may be 
tentatively concluded that the redistribution effect of 
the particles as described above is, in fact, even more 
serious than the analysis shows. In this respect it may 
be questioned whether a bimodal powder compact as 
starting material will inhibit this latter restacking ef- 
fect. On the one hand, a large difference in particle size 
in a compact with the correct morphology can greatly 
oppose restacking but, on the other hand, homogen- 
eous mixtures are very hard to obtain. Bimodality on 
the basis of particle sizes different by a factor of 2-4 is 
often seen to give homogeneous morphology and may 
suppress extensive restacking. 

In spite of this conclusion, a shortcoming of the 
present analysis should be mentioned. It is assumed 
that Equation 6 remains valid also for areas where, 
due to "reorganization, an enhanced densification is 
taking place. This should not necessarily be the case, 
which may be most easily understood by considering 
the case that the density is approaching its final value, 
when only structural changes occur but no real devel- 
opment of the particle stacking is allowed. We can 
easily determine the consequence of the above-men- 
tioned assumption when we calculate the average den- 
sity of the structure starting from the definition of z in 
terms of stacking density and integrate over the stack- 
ing density function given in Equation 23. It is found 
in this case that, in first-order approximation, the 
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density is given by 9 = 90(z) 3, which shows that reor- 
ganization in the present description does not neces- 
sarily lead to deviations in the density change rate 
from the expected behaviour in the case of a homo- 
geneous packing. 

However, it should be assumed that the increase in 
the parameter z will slow down when more than a few 
per cent of density increase is achieved, whereas a de- 
crease in areas with lower local stacking density is 
most likely to accelerate. For this reason integration 
over the complete z-spectrum should be restricted to 
z-values lower than a certain maximum, while the left 
flank of the distribution might be given more weight. 
The consequence of such a correction should be that 
due to the reorganizaton the density increase of the 
structure will significantly lag behind the increase ex- 
pected for a homogeneous structure. It would be easy 
to assume an upper limit for the integration, men- 
tioned, and to propose a weighting function, but doing 
so would introduce some arbitrariness in the result 
and does not lead to more specific insight into the 
matter. What is important, however, is that reorgan- 
ization is leading to a reduced overall densification 
compared to the case where no statistical variation in 
the particle coordination is assumed. 

At various places in the open literature this point 
has been raised, but was left unexplained [6-10]. 

The next point to consider is the case where no 
globally homogeneous packing exists. This occurs 
when the processing of a green structure is such that 
large agglomerates and voids remain. In this respect, 
an agglomerate should be seen as an area with high 

coordination and density, whereas a void is an area of 
reduced coordination. The consequence is that, for the 
present model, the starting distribution, Equation 13 
at h = 0 will have an extended tail at both the high 
and low coordination. It might be represented as the 
sum of two Gaussian distributions with different 
values of cy, one to describe the normal globally homo- 
geneous packing and one to describe departures from 
homogeneity. Integration to find the overall density 
should, for the above mentioned reasons, be restricted 
to a maximum for z. The result shows that reor- 
ganizaton is responsible for a pronounced reduction 
in the densifcation rate during sintering. 
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